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1. Introduction

A study of large amplitude free vibrations of simply supported beams, with axially immovable
ends, is presented in the classic work of Woinowsky-Krieger [1], wherein an elegant solution is
obtained in terms of elliptic integrals. Subsequently, this interesting problem is solved using the
versatile finite element method, with some assumptions and approximation [2,3]. The main
advantage of the finite element method is its applicability to beams with different boundary
conditions. A continuum solution for the same problem was presented by Srinivasan [4] through
the Ritz–Galerkin method with an assumed space–time distribution for the lateral displacement.
Singh et al. [5] proposed a refined finite element formulation, which gives very accurate results for
the aforementioned problem. A detailed presentation of large amplitude vibration of beams can
be seen in Ref. [6].

In general, trigonometric functions are used to represent lateral displacement distributions in
the continuum solutions mentioned above. While these functions can be chosen to represent the
exact behaviour of pinned–pinned beams, their choice can only represent approximately the
behaviour of beams with other end conditions. Further, in all the earlier investigations, wherever
applicable, only one-term trigonometric functions are used and their accuracy cannot be
improved by including additional terms. For example, for a typical case of a clamped–clamped
see front matter r 2004 Elsevier Ltd. All rights reserved.
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beam, a second term combined with the one-term solution cannot be obtained to represent the
deformation of the beam in the first vibration mode.

However, polynomial functions with multiple terms can be used with advantage satisfying
different types of geometric boundary conditions of the beams. Multiple term polynomial
functions are derived and employed in this paper to study the large amplitude free vibrations of
clamped–clamped and pinned–clamped beams using the conservation of total energy principle
developed earlier by the authors [7]. It may be noted that as a simple trigonometric function gives
exact solution [1] for pinned–pinned beam, this case is not considered in the present study. The
ratios of nonlinear to linear frequencies for different maximum amplitudes obtained presently are
compared with accurate finite element solutions of Singh et al. [5].

In the following sections, the formulation for large amplitude free vibration of uniform beams
involving the multi-term approximations to the lateral displacement is presented along with
numerical results and discussion.
2. Formulation

For any vibrating system, neglecting damping, the total energy at any given instant of time is
constant and is written as

T þ U þ W ¼ Constant; (1)

where T is the kinetic energy, U the strain energy and W the potential energy arising due to the
axial tension ‘P’ developed due to large amplitudes, but with small strains.

For the case of beams with immovable ends

T ¼
m

2

Z L

0

ð _wÞ2 dx; (2)

U ¼
EI

2

Z L

0

ðw00Þ
2 dx (3)

and

W ¼
P

2

Z L

0

1
2
ðw0Þ

2 dx; (4)

where m is the mass per unit length, w the lateral displacement, L the length of the beam, E the
Young’s modulus, I the area moment of inertia, x the axial coordinate, ð:Þ denotes differentiation
with respect to time ‘t’ and ð Þ

0 denotes differentiation with respect to ‘x’.
From Eqs. (1)–(4), we have

m

Z L

0

ð _wÞ2 dx þ EI

Z L

0

ðw00Þ
2 dx þ P

Z L

0

1
2
ðw0Þ

2 dx ¼ Constant: (5)

The axial tensile load ‘P’ for a beam with immovable ends can be obtained as follows:
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Assuming that one end of the beam is movable, the shortening of the length DL1 is given by

DL1 ¼
1

2

Z L

0

ðw0Þ
2 dx: (6)

If the axial tensile load ‘P’ is acting on the beam, the axial elongation ‘DL2’ due to ‘P’ is

DL2 ¼
PL

AE
; (7)

where A is the area of cross-section of the beam. For a beam with immovable ends,

DL1 ¼ DL2: (8)

From Eq. (8), we get

P ¼
AE

2L

Z L

0

ðw0Þ
2 dx: (9)

Noting that

I ¼ Ar2; (10)

where r is the radius of gyration, Eq. (9) can be written as

P ¼
EI

2Lr2

Z L

0

ðw0Þ
2 dx: (11)

The lateral displacement, wðx; tÞ is expressed as

wðx; tÞ ¼ W :d; (12)

where W is the nondimensional spatial distribution of lateral displacement at any time, t,
normalised in such a way that the maximum value is unity and d represents the time-dependent
lateral displacement at any x; the maximum being dm at the point max xmax; where the maximum
lateral displacement occurs.

Substituting Eq. (12) into Eq. (5), we get

_d
2
Z 1

0

W 2 dxþ
EI

m
d2

Z 1

0

ðW 00Þ
2 dx

þ
EI

2mLr2
d2

Z 1

0

ðW 0Þ
2 dx

� �
1
2
d2

Z 1

0

ðW 0Þ
2 dx

� �
¼ Constant: ð13Þ

Substituting the functional forms of W (see Appendix A) for the clamped–clamped and
pinned–clamped beams and after simplification the temporal equation is obtained as

_d
2
þ a1d

2
þ a2d

4
¼ ConstantðHÞ: (14)

For the clamped–clamped beam

a1 ¼ 504:00
EI

mL4
(15)
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and

a2 ¼ 14:6286
EI

mL4r2
(16)

for a one-term solution and

a1 ¼ 500:5847
EI

mL4
(17)

and

a2 ¼ 15:0196
EI

mL4r2
(18)

for a two-term solution.
For the pinned–clamped beam, a1 and a2 are

a1 ¼ 238:7368
EI

mL4
(19)

and

a2 ¼ 14:4222
EI

mL4r2
(20)

for a one-term solution and

a1 ¼ 238:4820
EI

mL4
(21)

and

a2 ¼ 14:6075
EI

mL4r2
(22)

for a two-term solution.
3. Linear free vibration

Neglecting a2 in Eq. (14), we get the linear frequency of the beam. The constant ‘H’ for the
linear vibration case can be easily obtained, by using the condition

_d ¼ 0 at d ¼ dm; (23)

where dm is the maximum amplitude of vibration, as

H ¼ a1dm: (24)

Then from Eq. (14)

_d ¼
dd
dt

¼ ½a1ðd
2
m � d2

Þ�1=2 (25)
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or

dt ¼
dd

½a1ðdm � d2
Þ�1=2

: (26)

Integrating Eq. (26), we get the linear time period ðTLÞ as

TL ¼
2p
o

¼ 4

Z dm

0

dd

½a1ðdm � d2
Þ�1=2

; (27)

where oL is the radian frequency of the beam in the linear range.
Substituting

d ¼ dm sin y (28)

into Eq. (27) and integrating the right-hand side, the time period TL is obtained as

TL ¼
2p
oL

¼
2p

a1=2
1

: (29)

Eq. (29) gives the radian frequency of the beam in the linear range.
4. Large amplitude free vibration

When the beam is undergoing large amplitude free vibration, the coefficient a2 in Eq. (14) has to
be taken into account and the constant H in this case is

H ¼ a1d
2
m þ a2d

4
m: (30)

Then, Eq. (25) becomes

_d ¼ ½a1ðd
2
m � d2

Þ þ a2ðd
4
m � d4

Þ�1=2: (31)

The nonlinear period TNL after integration is

TNL ¼
2p
oNL

¼ 4

Z p=2

0

dy

fa1½1 þ a2

a1
ð1 þ sin2 yÞd2

m�g
1=2

; (32)

where oNL is the radian frequency of the nonlinear system for a given maximum amplitude of
vibration dm:

The right-hand side of Eq. (32) can be integrated using a suitable numerical integration scheme,
to obtain oNL: In the present study, Simpson’s numerical integration rule is used to numerically
integrate the right-hand side of Eq. (32).
5. Numerical results and discussion

Using the formulation presented in the previous sections, the ratios of nonlinear frequency oNL

to the linear frequencies oL are obtained for several values of the maximum amplitude dm for the
uniform clamped–clamped and pinned–clamped beams.
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Table 1

Ratios of oNL to oL for a clamped–clamped beam

dm

r

Present solution Singh et al. [5] Trignometric admissible function [8]

One term Two term

0.0 1.0 1.0 1.0 1.0

0.2 1.0009 1.0009 1.0009 1.0009

0.4 1.0035 1.0036 1.0036 1.0037

0.6 1.0078 1.0081 1.0080 1.0084

0.8 1.0138 1.0143 1.0142 1.0149

1.0 1.0215 1.0222 1.0221 1.0231

2.0 1.0831 1.0858 1.0854 1.0892

3.0 1.1778 1.1833 1.1825 1.1902

4.0 1.2979 1.3067 1.3055 1.3178

5.0 1.4369 1.4492 1.4474 1.4647

lL 504.0 500.58 500.62 519.52
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Table 1 gives the oNL=oL ratios of the clamped–clamped beam obtained with one- and two-
term polynomial admissible functions for various values of amplitude parameter dm=r: The
present results are compared with the accurate results of Singh et al. [5], obtained by the versatile
finite element method. It can be seen from this table that the present two-term solution is more
accurate than the one-term solution and match very well with those given in Ref. [5]. The solution
obtained from the widely used trigonometric admissible function for clamped–clamped beam [8]
shows a larger deviation from the finite element solution, both in the linear frequency parameter
lL ð¼ mo2

LL4=EIÞ value and the nonlinear to linear frequency ratio, oNL=oL: It may be noted as
discussed in Refs. [9,10] that the effect of magnitude of axial force, P on the modal shapes is
negligible and the present evaluation provides improved solution.

The ratios of oNL=oL for the pinned–clamped beam for various dm=r obtained through the
present formulation are given for the one- and two-term solutions along with the results of Singh
et al. [5] in Table 2. It can be noted from this table that the present two-term solution matches well
with the accurate finite element solution [5].
6. Conclusions

Usefulness of the admissible polynomial functions with multiple terms in evaluating the
nonlinear (large amplitude) free-vibration behaviour of beams, with axially immovable ends, is
discussed in this note. The formulation is based on the principle of conservation of the total
energy of the vibrating system. The temporal equation obtained directly from this principle can be
integrated by any standard numerical integration scheme to obtain the ratios of the nonlinear to
linear frequencies for various maximum amplitude ratios.

One- and two-term solutions are obtained for the uniform clamped–clamped beam and
pinned–clamped beam. The present two-term solutions show a very good agreement with the
accurate finite element solutions available in the literature.



ARTICLE IN PRESS

Table 2

Ratios of oNL to oL for pinned–clamped beam

dm

r

Present solution Singh et al. [5]

One term Two term

0.0 1.0 1.0 1.0

0.2 1.0018 1.0018 1.0019

0.4 1.0072 1.0073 1.0077

0.6 1.0162 1.0164 1.0172

0.8 1.0285 1.0289 1.0304

1.0 1.0442 1.0448 1.0471

2.0 1.1665 1.1676 1.1758

3.0 1.3416 1.3458 1.3615

4.0 1.5535 1.5599 1.5838

5.0 1.7885 1.7970 1.8293

lL 238.74 238.48 237.73

Fig. 1. A clamped–clamped beam.
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Appendix A

The polynomial admissible functions for the clamped–clamped and pinned–clamped beams are
obtained using the boundary conditions and the symmetry conditions.
A.1. Clamped–clamped beam

The boundary conditions for a clamped–clamped beam at xð¼ x=LÞ ¼ 0 and 1 (Fig. 1) are

W ð0Þ ¼ W 0ð0Þ ¼ W ð1Þ ¼ W 0ð1Þ ¼ 0: (A.1)

The symmetry condition is

W 0 1
2

� �
¼ 0: (A.2)
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Assuming a sixth degree polynomial

W ðxÞ ¼ a0 þ a1xþ a2x
2
þ a3x

3
þ a4x

4
þ a5x

5
þ a6x

6 (A.3)

and using the boundary and symmetry conditions as Eqs. (A.1) and (A.2), W ðxÞ can be obtained
to be

W ðxÞ ¼ ðx2
� 2x3

þ x4
Þ � bðx3

� 3x4
þ 3x5

� x6
Þ: (A.4)

Further, W ðxÞ has to be properly normalised so that the maximum displacement becomes
unity.

Eq. (A.4) represents a two-term polynomial admissible function for the clamped–clamped
beam with both the terms satisfying the boundary conditions and symmetry conditions.
The solution can be obtained by using the first term alone (one-term solution) or both terms
together (two-term solution). It is to be noted here that W has to be normalised in such a way
that its value is unity at x ¼ 1

2: Eventhough this condition can be achieved in a simple way for one-
term solution, the eigenvector corresponding to the linear frequency oL has to be evaluated in the
two-term solution and then W has to be accordingly normalised to satisfy the aforementioned
condition.

A.2. Pinned–clamped beam

For the pinned–clamped beam (Fig. 2), the boundary conditions are

W ð0Þ ¼ W 00ð0Þ ¼ W ð1Þ ¼ W 0ð1Þ ¼ 0 (A.5)

and there are no symmetry conditions.
Assuming a quintic polynomial, the two terms of the admissible function for this beam are

obtained as

W ðxÞ ¼ ðx� 3x3
þ 2x4

Þ þ bðx3
� 2x4

þ x5
Þ: (A.6)
Fig. 2. A pinned–clamped beam.
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Again as in the case of the clamped–clamped beam, W has to be normalised so as to obtain a unit
displacement at x ¼ xmax: xmax can be calculated by obtaining the lowest root of

W 0ðxÞ ¼ 0: (A.7)

For a one-term approximation xmax ¼ 0:41654 and its value for the two-term solution is 0.42122.
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